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● Characterization and Multi-node Considerations 
●  Target Science 
●  Profiles and Hotspots 
●  Scaling and Communication 

● Single node optimizations 
●  Memory and cache footprint analysis 
●  Memory bandwidth requirements 
●  Vectorization 
●  Creating a kernel to aid in further analysis and testing 

● Example:  BerkeleyGW - FF kernel 



What Science do you want to run on Cori 
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●  Identify 1 or a few science problems that you anticipate 
running on Cori 
●  Identifying the science problems will help focus efforts on what routines 

and issues are important 

● Estimate how many nodes you will use during the run 
●  Does the code already scale this high? 
●  What can we say about communication 

●  The combination of science problem and number of nodes 
will allow one to estimate memory footprints, array sizes, 
and trip count sizes 
●  This information is critical 



Scaling and communication 

4 

● How high does the code scale 

● Does your code use both OpenMP and MPI? 
●  How many OpenMP threads can you utilize 

● What is limiting your scaling? 
●  Communication overhead? 
●  Lack of parallelism on a given science problem 

● Understand and optimizing scaling is critical 
●  KNL requires scaling to higher numbers of cores to achieve the same 

level of performance 
●  Scaling impacts loop trip counts, memory footprints, and more 



Where is the time being spent 
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● Are you sure?  Verify 
● Use statistical profilers to determine where the time is 

being spent 
●  Are there obvious key routines that time up a significant percentage of 

time? 
●  Are there key loops or code sections? 
●  How many routines before you hit 80% of the run time 

●  Is the profile different for different science problems? 



Understanding your memory footprint is critical 
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● Do you expect to your problem to consume a significant 
amount of main memory? 
●  Main memory is about 96 Gbytes 

●  Is it possible that your problem will fit into fast memory 
●  Fast memory is 16 Gbytes per node 

●  Can be configured as a “memory cache” 
●  Can be configured 50% cache and 50% explicitly managed 
●  Can be configured 25% cache and 75% explicitly managed 
●  Can be configured at 100% explicitly managed 

● What is the memory access pattern for the routines and 
loops identified as important 
●  What are the trip counts in that loop nest? 
●  How much data is accessed?   
●  How much is reused more than once? 



Vectorization 
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● Do the loops vectorize? 
 
● Vectorization is very important to achieving high 

performance rates 
●  Edison vectors are 4 DP words, Cori is longer 
●  Cannot take full advantage of functional units without vectorization 
●  Unlikely to take full advantage of memory bandwidth 
●  Scalar performance on Cori  

● Common inhibitors 
●  Dependencies 
●  Indirect addressing may prevent vectorization or make is less efficient 

●  e.g.  A(indx(i)) =  
●  Function / subroutine calls 
●  If tests inside of inner loops may slow execution and prevent vectorization 
●  More… 



Are your kernels memory bandwidth bound 
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● Do you expect to your problem to consume a significant 
amount of main memory? 
●  Main memory is about 96 Gbytes 

●  Is it possible that your problem will fit into fast memory 
●  Fast memory is 16 Gbytes per node 

●  Can be configured as a “memory cache” 
●  Can be configured 50% cache and 50% explicitly managed 
●  Can be configured at 100% explicitly managed 

● What is the memory access pattern for the routines and 
loops identified as important 
●  What are the trip counts in that loop nest? 
●  How much data is accessed?   
●  How much is reused more than once? 



How can you tell if you are memory bandwidth 
bound? 

9 

● Sometimes it is easy 
●  One or more loop nests are streaming through a huge amount of data 
●  Little to no reuse 
●  Easy to determine the  

● Sometimes it is difficult 
●  Some trip counts are large 
●  But some data are reused  
●  Not obvious what the compiler did 
●  Not obvious if the data remains in cache 

● Counters can be difficult to interpret 
●  Difficult to keep track of different levels of cache 

●  Try to run kernel using 1 or 2 fewer cores 
●  Adjust the number of OMP threads 
●  Use aprun –S option to spread mpi ranks across more sockets 
●  If performance per socket does not change, kernel may be bandwidth 

bound 
●  Try and examine trip counts and reference patterns 



Create kernel that are representative of critical 
loops 
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● Use all of the information previously discussed to create 
kernels to be used for further investigation 

●  Trip counts and array sizes per node should be as accurate 
as possible 
●  Goal is to reflect what are real science problem running on a significant 

portion of the machine would look like on a single socket 

● Kernel should use all of the cores of a single socket on 
Edison 
●  Kernels that only run on a single core will not capture the full memory 

footprint and bandwidth characteristics of the real code 



Why do we need a kernel? 
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● Extreme flexibility and portability 
●  Cannot assume we will always run on a multi-node supercomputer 
●  Might not even run it “directly” on a computer 

● Run on many different platforms 
●  Single socket of edison 
●  KNC whitebox 
●  KNL simulator or emulator 
●  Early KNL hardware 
●  KNL whitebox 

●  Focused analysis 
●  Some tools may not be able to run a full program 
●  Want to focus on a particularly important area 

●  Flexible experimentation 
●  Try different compilers and options without porting entire code 
●  May want to try different “decompositions” and optimizations that would 

(temporarily) break the larger code 



Example Analysis and Optimizations: 
 

BerkeleyGW 



 BerkeleyGW 
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● Identified 4-6 kernels 
●  GPP 
●  FF 
●  BSE 
●  Chi Summation 
●  FFT  (library not analyzed by Cray) 
●  Scalapack (library not analyzed by Cray) 

● Cray analyzed and provided potential optimizations GPP, 
FF, BSE, and Chi Summation for: 
●  Vectorization 
●  Memory footprint requirements 
●  Memory bandwidth requirements 
●  OpenMP effectiveness 
●  Cray and Intel compiler 

● Next few slides review some of the work done for FF 



 BerkeleyGW kernels:  FF 
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● Excellent vectorization and OpenMP 
● Used craypat to examine where time was being spent 

module unload darshan  # darshan does not seem to play well with craypat 
module load perftools 
ftn -rm -o ffkernel.x ffkernel.f90 
pat_build ffkernel.x 
run 
pat_report ffkernel.x+pat+36422-5701s.xf > ffkernel.manyfreq.patreport 

●  Generates both a routine level… 
 100.0% | 585.0 |   -- |    -- |Total 
|---------------------------------------------------- 
|  81.9% | 479.0 |   -- |    -- |USER 
||--------------------------------------------------- 
||  64.4% | 377.0 | 10.8 |  3.1% |ffkernel_.LOOP@li.388 
||  12.6% |  74.0 |   -- |    -- |ffkernel_ 
||   3.8% |  22.0 |  4.2 | 19.3% |ffkernel_.LOOP@li.517 
● … and a line level statistical profile report 
||  64.4% | 377.0 |   -- |    -- |ffkernel_.LOOP@li.388 
||||-------------------------------------------------------------- 
4|||  25.6% | 150.0 | 29.6 | 18.8% |line.406 
4|||  12.5% |  73.0 | 11.2 | 12.7% |line.408 
4|||  25.1% | 147.0 | 14.0 | 10.1% |line.414 



 BerkeleyGW kernels:  FF 

15 

●  Line level statistical profile report 
||  64.4% | 377.0 |   -- |    -- |ffkernel_.LOOP@li.388 
||||-------------------------------------------------------------- 
4|||  25.6% | 150.0 | 29.6 | 18.8% |line.406 
4|||  12.5% |  73.0 | 11.2 | 12.7% |line.408 
4|||  25.1% | 147.0 | 14.0 | 10.1% |line.414 
 
 
!$OMP PARALLEL do private (my_igp,igp,indigp,igmax,ig,schDtt,I_epsRggp_int, & 
!$OMP I_epsAggp_int,schD,schDt,ifreq) reduction(+:schdt_array)     !This was line 388 in the source 
do ifreq=1,nFreq 
  do my_igp = 1, ngpown 
    do ig = 1, igmax 
      I_epsRggp_int = I_epsR(ig,my_igp,ifreq)     !This was line 406 in the source 
      I_epsAggp_int = I_epsA(ig,my_igp,ifreq)   !This was line 408 in the source 
      schD=I_epsRggp_int-I_epsAggp_int 
      schDtt = schDtt + matngmat(ig,my_igp)*schD  !This was line 414 in the source 
    enddo 
  enddo 
enddo 

●  Don’t focus too much on the time spent in one line vs another… 
●  …The point is that it is clear that a very significant amount of time is being spent in this loop 

nest / region 



 BerkeleyGW kernels:  FF 
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● Examined trip counts and declarations to calculate memory 
footprint and reuse 
●  nFreq = 20000 
●  Ngpown = 20 
●  Igmax = 1000 

 
!$OMP PARALLEL do private (…  & 
!$OMP …) reduction(+:schdt_array)  
do ifreq=1,nFreq 
  do my_igp = 1, ngpown 
    do ig = 1, igmax 
      I_epsRggp_int = I_epsR(ig,my_igp,ifreq) 
      I_epsAggp_int = I_epsA(ig,my_igp,ifreq) 
      schD=I_epsRggp_int-I_epsAggp_int 
      schDtt = schDtt + matngmat(ig,my_igp)*schD 
    enddo 
  enddo 
enddo 

●  Lots and lots of parallelism 
●  I_epsR and I_epsA were each about 1.6 Gbytes with no 

immediate reuse 
● matngmat about 80 kbytes, and shared across threads 



 BerkeleyGW kernels:  FF 
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●  Let’s examine OpenMP scaling for a moment 

● Virtually no improvement in performance after 8 threads 
● Yet we know there is lots and lots of parallelism 

0 

2 

4 

6 

8 

10 

12 

14 

16 

18 

0 2 4 6 8 10 12 

Ti
m

e 
in

 S
ec

on
ds

 

Number of Threads 

Time Spent in Loop 388 



 BerkeleyGW kernels:  FF 
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● Streaming data arrays that are more than 3 Gbytes in size 
●  Lots of parallelism, but performance stops improving 

● Conclusion:  Loop was memory bandwidth bound 

● On Cori I_epsR might fit into fast memory 
●  But then we would still just be limited by the bandwidth of fast memory 

● Only way to go faster is to find more data reuse 
 
do ifreq=1,nFreq 
  do my_igp = 1, ngpown 
    do ig = 1, igmax 
      I_epsRggp_int = I_epsR(ig,my_igp,ifreq) 
      I_epsAggp_int = I_epsA(ig,my_igp,ifreq) 
      schD=I_epsRggp_int-I_epsAggp_int 
      schDtt = schDtt + matngmat(ig,my_igp)*schD 
    enddo 
  enddo 
enddo 



 BerkeleyGW kernels:  FF 
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●  Realized there was a “nbands” loop at a relatively high level that reused the I_eps* variables 
●  Worked to effectively cache block main loops 

do ifreq=1,nFreq 
  do igbeg = 1,igmax,igblk 
    igend = min(igbeg+igblk-1,igmax) 
    do my_igp_beg = 1, ngpown,cblk 
      my_igp_end = min(my_igp_beg+cblk-1,ngpown) 
      do n1_beg=1,number_bands,cblk 
        n1_end = min(n1_beg+cblk-1,number_bands) 
        do my_igp = my_igp_beg,my_igp_end 
          do n1=n1_beg,n1_end 
            … 
            do ig = igbeg, igend 
              I_epsRggp_int = I_epsR(ig,my_igp,ifreq) 
              I_epsAggp_int = I_epsA(ig,my_igp,ifreq) 
              schD=I_epsRggp_int-I_epsAggp_int 
              schDtt=schDtt+aqsntemp(ig,n1) *CONJG(aqsmtemp(igp,n1))*schD 
            enddo 
            schdt_matrix(ifreq,n1) = schdt_matrix(ifreq,n1) + schDtt 
          enddo 
        enddo 
      enddo 
    enddo 
  enddo 
enddo 

●  Resulted in a 4X improvement in wall-clock time on XEON 

I_eps arrays do not change 
with n1 
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●  Realized there was a “nbands” loop at a relatively high level that reused the I_eps* variables 
●  Worked to effectively cache block main loops 

do ifreq=1,nFreq 
  do igbeg = 1,igmax,igblk 
    igend = min(igbeg+igblk-1,igmax) 
    do my_igp_beg = 1, ngpown,cblk 
      my_igp_end = min(my_igp_beg+cblk-1,ngpown) 
      do n1_beg=1,number_bands,cblk 
        n1_end = min(n1_beg+cblk-1,number_bands) 
        do my_igp = my_igp_beg,my_igp_end 
          do n1=n1_beg,n1_end 
            … 
            do ig = igbeg, igend 
              I_epsRggp_int = I_epsR(ig,my_igp,ifreq) 
              I_epsAggp_int = I_epsA(ig,my_igp,ifreq) 
              schD=I_epsRggp_int-I_epsAggp_int 
              schDtt=schDtt+aqsntemp(ig,n1) *CONJG(aqsmtemp(igp,n1))*schD 
            enddo 
            schdt_matrix(ifreq,n1) = schdt_matrix(ifreq,n1) + schDtt 
          enddo 
        enddo 
      enddo 
    enddo 
  enddo 
enddo 

●  Resulted in a 4X improvement in wall-clock time on XEON 

aqsntemp array does not  
change with my_igp 



 Data Reuse will be important 
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● Data reuse will be critical to performance  

● Reuse out of HBM will reduce requirements on main memory 

● Reuse out of lower levels of cache will  lower requirements 
on HBM 

●  In order to know how to cache block properly we need to 
know the trip counts of loops and the sizes of various arrays 
as accurately as possible 



Summary 
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● Code Characterization will be an important first step in 
preparing for Cori 
●  Target Science 
●  Target Scaling 
●  Hotspot identification 

● Cori node is different from Edison node 
●  Single node optimizations will be an early focus 
●  A properly designed kernel will help with optimization efforts 
●  Vectorization will be more important in the future 

● Data reuse will be important, but how important will depend 
on memory footprints and access patterns 


